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High-Fidelity Generalized Method of Cells for Inelastic
Periodic Multiphase Materials

Abstract

An extension of a recently-developed linear thermoelastic theory for multiphase periodic materials
is presented which admits inelastic behavior of the constituent phases. The extended theory is capable
of accurately estimating both the effective inelastic response of a periodic multiphase composite and
the local stress and strain Þelds in the individual phases. The model is presently limited to materials
characterized by constituent phases that are continuous in one direction, but arbitrarily distributed within
the repeating unit cell which characterizes the material�s periodic microstructure. The model�s analytical
framework is based on the homogenization technique for periodic media, but the method of solution for
the local displacement and stress Þelds borrows concepts previously employed by the authors in con-
structing the higher-order theory for functionally graded materials, in contrast with the standard Þnite-
element solution method typically used in conjunction with the homogenization technique. The present
approach produces a closed-form macroscopic constitutive equation for a periodic multiphase material
valid for both uniaxial and multiaxial loading. The model�s predictive accuracy in generating both the
effective inelastic stress-strain response and the local stress and inelastic strain Þelds is demonstrated
by comparison with the results of an analytical inelastic solution for the axisymmetric and axial shear
response of a unidirectional composite based on the concentric cylinder model, and with Þnite-element
results for transverse loading.

1 Introduction

Micromechanical modeling of multiphase materials with inelastic phases continues to be a challenging
problem due to the path-dependence of the local Þeld variables which govern the overall or macroscopic
behavior of the material. The relationship between the local and global variables through the use of Hill�s
strain or stress concentration tensors, Hill (1963), which deÞne the instantaneous macroscopic response,
must be established at each instant along the loading path. This is in contrast with the elastic problem which
requires determination of Hill�s concentration tensors just once.
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Many different approaches with varying degrees of complexity and limitations have been proposed for
modeling the inelastic response of multiphase materials, cf. Dvorak (2000) for a recent review article. Mod-
els for which exact analytical inelastic solutions of the governing Þeld equations are available are limited to
the concentric cylinder geometry under axisymmetric or axial shear (but not transverse) loading, Pindera et
al. (1993) and Williams and Pindera (1997). Finite-element analyses of repeating unit cells representative
of materials with periodic microstructures produce very accurate estimates of the local Þeld variables, albeit
at a substantial computational cost. The construction of inelastic macroscopic constitutive equations for
arbitrary loading based on such analyses is not straightforward, making it difÞcult to embed Þnite-element
based models into more general structural analysis procedures. This has given rise to the development of
approximate models which employ simplifying assumptions on the form of displacement or stress Þelds
within the individual phases. The effect of the inelastic response of the matrix phase is often accounted for
through the average values of the inelastic strain Þeld either in the entire matrix phase or in the subvolumes
into which the matrix phase is partitioned.
A number of approximate analyses of a repeating unit cell, which employ subvolume discretization of

the unit cell to mimic the material�s microstructure, has been developed to deal with the inelastic response
of periodic multiphase materials. The Generalized Method of Cells, Paley and Aboudi (1992), employs
a Þrst-order representation of the displacement Þeld in each subcell of the repeating unit cell, producing
piece-wise uniform strain and stress Þelds throughout the cell. The method is a generalization of the
original Method of Cells developed by Aboudi (1982) which is based on a limited cell discretization. In the
context of unidirectional composites, the generalized version allows accurate and efÞcient analysis of the
impact of Þber shape and arrangement on the composite�s inelastic macroscopic response, as demonstrated
by Arnold et al. (1996). The predictive capability of the method in various applications has been recently
summarized by Aboudi (1996). However, despite the method�s demonstrated accuracy in modeling the
inelasticmacroscopic response of periodic composites, the accuracy with which local stress and strain Þelds
are captured (although acceptable in many applications) is not as good. This, for instance, requires the
incorporation of additional assumptions and modiÞcations into the model�s framework in order to trace
the evolution of damage at the local level due, for instance, to Þber breakage and Þber/matrix debonding,
Bednarcyk and Arnold (2001a,b) and Pahr and Arnold (2001).
The assumption of piece-wise uniform strain Þelds has also been employed by Dvorak (1992) in the

context of a procedure called the Transformation Field Analysis. This approach has recently been gener-
alized by Chaboche et al. (2001) and demonstrated to capture the local stress and (inelastic) strain Þelds
with good accuracy in comparison to Þnite-element simulations. Methods which employ more accurate Þeld
representations within the repeating unit cell of a periodic composite, albeit at a signiÞcantly enhanced com-
putational cost, have been developed by Walker et al. (1994) and Fotiu and Nemat-Nasser (1996). These
are based on Fourier series approximations of the stress and strain Þelds within the repeating unit cell. In
practice, the solution of the local Þeld quantities is obtained by discretizing the cell into square or triangular
subvolumes in which the eigenstrains are assumed to be uniform.
Most recently, a new method for the analysis of the thermoelastic response of multiphase periodic mate-

rials, characterized by repeating unit cells with arbitrary microstructures in the plane normal to the direction
of the continuous reinforcement (admitting fully anisotropic behavior in this plane), was developed in which
the displacement Þeld within each subvolume of the repeating unit cell was approximated by quadratic func-
tions expressed in local coordinates, Aboudi et al. (2001). This, in turn, produces linear strain and stress
Þelds at the local subvolume level, in contrast with the piece-wise uniform Þelds employed in the Gener-
alized Method of Cells and Transformation Field Analysis. The method�s analytical framework is based on
the homogenization technique (cf. Sanchez-Palencia, 1980; Suquet, 1987; Parton and Kudryavtsev, 1993;
Kalamkarov and Kolpakov, 1997), but the solution procedure for the local displacement, strain and stress
Þelds within each subvolume of the repeating unit cell borrows concepts previously employed by the au-
thors in constructing the higher-order theory for functionally graded materials, Aboudi et al. (1999). The
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higher-order subvolume displacement representation relative to that employed in the Generalized Method
of Cells provides the necessary shear-coupling between the local normal and shear deformation Þelds and
the macroscopically applied average strains. This feature, in turn, produces excellent estimates of both the
effective thermoelastic moduli of periodic composites and the local stress and strain Þelds in the individual
constituents, as demonstrated in Aboudi et al. (2001) through comparison with the Þnite-element results of
Sun and Vaidya (1996) for the effective moduli and an analytical solution for the local stress Þelds. There-
fore, in view of the above features and the same volume discretization methodology as that employed in the
Generalized Method of Cells, we refer to this new method as High-Fidelity Generalized Method of Cells or
HFGMC.
Herein, an extension of this method is presented which accounts for the inelastic behavior of the in-

dividual phases. The method�s fully analytical nature results in a closed-form expression for the effective
response of a periodic multiphase material under multiaxial loading given in the form of a macroscopic
thermoinelastic stress-strain relationship, which can easily be incorporated into a structural analysis code as
a subroutine. The ease of the repeating unit cell�s construction and the demonstrated accuracy of the theory
in predicting the average and the local stress and plastic strain Þelds, facilitates quick, efÞcient and reliable
analysis of the impact of a multiphase material�s microstructure on the average and local response. The the-
ory�s accuracy is validated based on comparison with the analytical concentric cylinder model predictions
for axisymmetric and axial shear loading, and Þnite-element predictions for transverse loading. Further,
comparison with the predictions of the original Generalized Method of Cells is presented in order to illus-
trate the advantages derived from the new approach. This comparison also provides an explanation for the
good accuracy of the Generalized Method of Cells at the macroscopic level despite poor estimates of certain
stress components at the microscopic level.

2 Theoretical Framework

Consider a multiphase composite wherein the microstructure is periodically distributed in the plane x2 −
x3 deÞned by the global coordinates (x2, x3), see Fig. 1 where the repeating unit cell used to construct
the periodic array is highlighted. In the framework of the homogenization method, the displacements are
asymptotically expanded as follows

ui(x,y) = u0i(x,y) + δ u1i(x,y) + δ
2 u2i(x,y) + ... (1)

where x = (x1, x2, x3) are the macroscopic (global) coordinates, and y = (y1, y2, y3) are the microscopic
(local) coordinates that are deÞned with respect to the repeating unit cell. The material�s periodicity imposes
the constraint uαi(x,y) = uαi(x,y+npdp) on the different-order terms uαi (α = 0, 1, 2, ...) in Eq. (1),
where np are arbitrary integer numbers and the constant vectors dp characterize the material�s periodicity.
In addition, the size of the unit cell is further assumed to be much smaller than the size of the body so
that the relation between the global and local systems is yi = xi/δ, where δ is a small scaling parameter
characterizing the size of the unit cell. This implies that a movement of order unity on the local scale
corresponds to a very small movement on the global scale.
Employing the following relation in evaluating the derivative of a Þeld quantity:

∂

∂xi
→ ∂

∂xi
+
1

δ

∂

∂yi
(2)
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Figure 1. A multiphase composite with a periodic microstructure in the x2 − x3 plane characterized by a
repeating unit cell (highlighted).

the strain components are determined from the displacement expansion (1) in the following form

$ij = $̄ij(x) +�$ij(x,y) +O(δ) (3)

where the average and ßuctuating strains, $̄ij(x) and�$ij(x,y), are given by global and local strain-displacement
relations as follows

$̄ij(x) =
1

2
(
∂ūi
∂xj

+
∂ūj
∂xi

), �$ij(x,y) =
1

2
(
∂�ui
∂yj

+
∂�uj
∂yi

) (4)

In the above equation, ūi are displacement components in the homogenized region (at the continuum scale)
and hence are not functions of the local coordinates y, and u1i = �ui are the ßuctuating displacements. It
can be easily shown that

1

Vy

!
$ijdVy =

1

Vy

!
($̄ij +�$ij)dVy = $̄ij

where Vy is the volume of the repeating unit cell. This follows directly from the periodicity of the ßuctuating
strain, implying that the average of the ßuctuating strain taken over the unit repeating cell vanishes.
Using Eq. (3), one can readily represent the displacements in the form

ui(x,y) = $̄ijxj + �ui +O(δ
2) (5)

where $̄ijxj represents the contribution of the average (homogenized) strain to the total displacement Þeld
and �ui represents the ßuctuating displacement Þeld. This representation will be employed in constructing
an approximate displacement Þeld for the solution of the cell problem discussed in Section 2.2.
For given values of the average strains $̄ij , the unknown ßuctuating displacements are governed by the

equilibrium equations subject to periodic boundary conditions imposed on the displacement and traction
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components that are prescribed at the boundaries of the repeating unit cell. In addition to these boundary
conditions one needs to impose the continuity of displacements and tractions at the internal interfaces be-
tween the phases that Þll the repeating unit cell. The manner of solving the governing Þeld equations for the
ßuctuating displacements in the repeating unit cell based on the representation given by Eq. (5) is described
next.

2.1 DeÞnition of the cell problem

We perfom the analysis on the repeating unit cell which occupies the region 0 ≤ y2 ≤ H, 0 ≤ y3 ≤ L
speciÞed in terms of the local coordinates (y2, y3). The microstructure of the repeating unit cell in the y2−y3
plane in the given region is discretized into Nq and Nr internal or generic cells. Figure 2(a) illustrates how
the repeating unit cell highlighted in Fig. 1 could be discretized. In addition, every generic cell consists
of four subcells designated by the pair (βγ) where each index takes the value 1 or 2 which indicates the
relative position of the given subcell along the y2 and y3 axis, respectively, see Fig. 2(b). The indices
q and r, whose ranges are q = 1, 2, ..., Nq and r = 1, 2, ...,Nr, identify the generic cell in the y2 − y3
plane. The dimensions of the generic cell along the y2 and y3 axes are h

(q)
1 , h

(q)
2 and l(r)1 , l

(r)
2 , such that

H =
"Nq
q=1(h

(q)
1 + h

(q)
2 ), L =

"Nr
r=1(l

(r)
1 + l

(r)
2 ). This manner of discretizing a periodic material�s

microstructure has also been employed in constructing the original Generalized Method of Cells (Paley and
Aboudi, 1992). The construction of the higher-order theory for functionally graded materials, characterized
by spatially variable microstructures without a deÞnable repeating unit cell, is also based on such volume
discretization (Aboudi et al. 1999).
Given an applied macroscopic loading speciÞed by the average strains $̄ij , an approximate solution for

the displacement Þeld within each (βγ) subcell of theNqNr generic cells is constructed based on volumetric
averaging of the equilibrium equations together with the imposition of periodic boundary conditions, and
both the displacement and traction continuity conditions, in an average sense between the cells and subcells
used to characterize the material�s microstructure. The equilibrium equations for the (βγ) subcell occupying
the region | ȳ(β)2 |≤ h(q)β /2, | ȳ(γ)3 |≤ l(r)γ /2 that the displacement Þeld must satisfy are given by

∂2σ
(βγ)
2j + ∂3σ

(βγ)
3j = 0 j = 1, 2, 3 (6)

where ∂2 = ∂/∂ȳ
(β)
2 and ∂3 = ∂/∂ȳ

(γ)
3 . The subcell stress components are related to the subcell strains

through generalized Hooke�s Law which includes spatially uniform thermal loading characterized by the
temperature deviation∆T from a reference temperature and inelastic effects,

σ
(βγ)
ij = C

(βγ)
ijkl ($

(βγ)
kl − $I(βγ)kl − $T (βγ)kl ) (7)

whereC(βγ)ijkl are the elements of the stiffness tensor of the (βγ) subcell , $
(βγ)
kl are the total strains, and $I(βγ)kl ,

$
T (βγ)
kl are the inelastic and thermal strains in the subcell, with no summation implied by repeated Greek
letters in the above and henceforth. The inelastic strains are derived from the chosen inelastic constitutive
model. In this paper, we consider either elastic orthotropic materials (characterized by nine independent
C
(βγ)
ijkl elements) or inelastic materials which are isotropic in both elastic and inelastic domains. Hence, Eq.
(7) reduces to (assuming incompressibility of the inelastic strains)

σ
(βγ)
ij = C

(βγ)
ijkl $

(βγ)
kl − 2µ(βγ)$I(βγ)ij − σT (βγ)ij (8)

where µ(βγ) is the elastic shear modulus of the material Þlling the given subcell (βγ), and the term σT (βγ)ij ,
henceforth referred to as thermal stress, stands for the thermal contribution

σ
T (βγ)
ij = Γ

(βγ)
ij ∆T (9)
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where ¡(βγ)ij are the thermal stress coefÞcients. We relate the subcell displacement Þeld, which forms the
basis for the solution of the equlibrium equations, to the subcell stresses through the Hooke�s Law (7) in
conjunction with the subcell strain-displacement equations. Taking into account Eqs. (3) and (4), the total
strains in the subcell (¯°) are given by

²
(βγ)
ij = ¹²ij +

1

2
(@iu

(βγ)
j + @ju

(βγ)
i ) (10)

where @1 = 0 and @2, @3 have been deÞned previously.

Figure 2. (a) Volume discretization of the repeating unit cell employed in the present model, (b) generic cell
within the repeating unit cell.

2.2 Method of solution for the cell problem

We begin the solution of the equilibrium equations by approximating the ßuctuating displacements in each
subcell using a quadratic expansion in terms of local coordinates (¹y(β)2 ; ¹y

(γ)
3 ) centered at the subcell�s mid-

point. This is in sharp contrast with the original Generalized Method of Cells where the employed displace-
ment expansion was linear as a result of which the coupling between the local normal and shear effects was
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lost. A higher-order representation of the ßuctuating displacement Þeld is necessary in order to capture the
local effects created by the Þeld gradients and the microstructure of the composite. This was demonstrated
within the framework of the elastic version of the High-Fidelity Generalized Method of Cells in the context
of the problem of an inÞnite plate with a circular inclusion subjected to a far-Þeld uniform stress (Aboudi et
al. 2001). Both qualitative and quantitative aspects of the local stress Þeld within the inclusion and its vicin-
ity, as well as the asymptotic character of the stress Þeld away from the inclusion, were captured with very
good accuracy upon comparison with the exact analytical solution. Such local effects cannot be captured by
the original Generalized Method of Cells due the Þrst-order (linear) displacement representation within each
subcell (which produces piece-wise uniform strain and stress Þelds within the repeating unit cell), and the
imposition of traction continuity conditions at the subcell interfaces in an average sense. As a consequence,
tractions along each column of subcells spanning the representative volume element in the directions as-
sociated with the particular traction components are uniform, precluding the posssibility of modeling local
effects due to matrix-inclusion as well as adjacent inclusion interactions (Pindera and Bednarcyk, 1999).
This shortcoming has been eliminated by the present theory as previously demonstrated in the elastic case
and as will be demonstrated in the inelastic case considered in the current contribution.
Following the general displacement representation for periodic media given by Eq. (5), the subcell

displacement approximation in the High-Fidelity Generalized Method of Cells has the form (omitting the
cell label (q, r), see Fig. 2b),

u
(βγ)
1 = $̄1jxj +W

(βγ)
1(00) + ȳ

(β)
2 W

(βγ)
1(10) + ȳ

(γ)
3 W

(βγ)
1(01)

+
1

2
(3ȳ

(β)2
2 − h

(q)2
β

4
)W

(βγ)
1(20) +

1

2
(3ȳ

(γ)2
3 − l

(r)2
γ

4
)W

(βγ)
1(02) (11)

u
(βγ)
2 = $̄2jxj +W

(βγ)
2(00) + ȳ

(β)
2 W

(βγ)
2(10) + ȳ

(γ)
3 W

(βγ)
2(01)

+
1

2
(3ȳ

(β)2
2 − h

(q)2
β

4
)W

(βγ)
2(20) +

1

2
(3ȳ

(γ)2
3 − l

(r)2
γ

4
)W

(βγ)
2(02) (12)

u
(βγ)
3 = $̄3jxj +W

(βγ)
3(00) + ȳ

(β)
2 W

(βγ)
3(10) + ȳ

(γ)
3 W

(βγ)
3(01)

+
1

2
(3ȳ

(β)2
2 − h

(q)2
β

4
)W

(βγ)
3(20) +

1

2
(3ȳ

(γ)2
3 − l

(r)2
γ

4
)W

(βγ)
3(02) (13)

where W (βγ)
i(00) are the ßuctuating volume-averaged displacements, andW

(βγ)
i(mn) (i = 1, 2, 3) are the higher-

order terms. The number of these unknown microvariables that describe the ßuctuating displacements in
the cell (q, r) is 60. These microvariables are determined by satisfying the equilibrium equations (6) in
a volumetric sense, the interfacial continuity conditions (both displacements and tractions) on the faces
separating adjacent subcells and cells in an integral sense,

lγ/2!
−lγ/2

σ
(1γ)
2j |(q,r)

y
(1)
2 =h1/2

dy
(γ)
3 =

lγ/2!
−lγ/2

σ
(2γ)
2j |(q,r)

y
(2)
2 =−h2/2

dy
(γ)
3

hβ/2!
−hβ/2

σ
(β1)
3j |(q,r)

y
(1)
3 =l1/2

dy
(β)
2 =

hβ/2!
−hβ/2

σ
(β2)
3j |(q,r)

y
(2)
3 =−l2/2

dy
(β)
2
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lγ/2!
−lγ/2

σ
(1γ)
2j |(q+1,r)

y
(1)
2 =−h1/2

dy
(γ)
3 =

lγ/2!
−lγ/2

σ
(2γ)
2j |(q,r)

y
(2)
2 =h2/2

dy
(γ)
3

hβ/2!
−hβ/2

σ
(β1)
3j |(q,r+1)

y
(1)
3 =−l1/2

dy
(β)
2 =

hβ/2!
−hβ/2

σ
(β2)
3j |(q,r)

y
(2)
3 =l2/2

dy
(β)
2

lγ/2!
−lγ/2

#u(1γ)i |(q,r)
y
(1)
2 =h1/2

dy
(γ)
3 =

lγ/2!
−lγ/2

#u(2γ)i |(q,r)
y
(2)
2 =−h2/2

dy
(γ)
3

hβ/2!
−hβ/2

#u(β1)i |(q,r)
y
(1)
3 =l1/2

dy
(β)
2 =

hβ/2!
−hβ/2

#u(β2)i |(q,r)
y
(2)
3 =−l2/2

dy
(β)
2

lγ/2!
−lγ/2

#u(1γ)i |(q+1,r)
y
(1)
2 =−h1/2

dy
(γ)
3 =

lγ/2!
−lγ/2

#u(2γ)i |(q,r)
y
(2)
2 =h2/2

dy
(γ)
3

hβ/2!
−hβ/2

#u(β1)i |(q,r+1)
y
(1)
3 =−l1/2

dy
(β)
2 =

hβ/2!
−hβ/2

#u(β2)i |(q,r)
y
(2)
3 =l2/2

dy
(β)
2 (14)

and the periodic boundary conditions at y2 = 0,H and y3 = 0, L expressed in the local subcell coordinates
for the appropriate subcells within the boundary generic cells

lγ/2!
−lγ/2

σ
(1γ)
2j |(1,r)

y
(1)
2 =−h1/2

dy
(γ)
3 =

lγ/2!
−lγ/2

σ
(2γ)
2j |(Nq ,r)

y
(2)
2 =h2/2

dy
(γ)
3

hβ/2!
−hβ/2

σ
(β1)
3j |(q,1)

y
(1)
3 =−l1/2

dy
(β)
2 =

hβ/2!
−hβ/2

σ
(β2)
3j |(q,Nr)

y
(2)
3 =l2/2

dy
(β)
2

lγ/2!
−lγ/2

#u(1γ)i |(1,r)
y
(1)
2 =−h1/2

dy
(γ)
3 =

lγ/2!
−lγ/2

#u(2γ)i |(Nq,r)
y
(2)
2 =h2/2

dy
(γ)
3

hβ/2!
−hβ/2

#u(β1)i |(q,1)
y
(1)
3 =−l1/2

dy
(β)
2 =

hβ/2!
−hβ/2

#u(β2)i |(q,Nr)
y
(2)
3 =l2/2

dy
(β)
2 (15)

where i, j = 1, 2, 3. These periodicity conditions ensure that the repeating unit cell is an intergral part of
the periodic array representing the entire multiphase material, thereby explicity accounting for the interac-
tion with the adjacent unit cells. As shown in the following development, application of these conditions
produces the correct number of equations for the determination of the unknown microvariables.
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In the perfectly elastic case, the above displacement expansions produce linear variations in strains and
stresses at each point within the subcell. In the presence of inelastic effects, however, a linear strain gener-
ated by these equations does not imply the linearity of the stress Þeld due to the path-dependent deformation.
Thus the displacement Þeld microvariables must depend implicitly on the inelastic strain distributions, giv-
ing rise to a higher-order stress Þeld than the linear strain Þeld generated from the assumed displacement
Þeld representation. In the presence of inelastic effects, this higher-order stress Þeld is represented by a
higher-order Legendre polynomial expansion in the local coordinates. Therefore, the strain Þeld gener-
ated from the assumed displacement Þeld, and the resulting stress Þeld, must also be expressed in terms of
Legendre polynomials:

$
(βγ)
ij =

∞$
m=0

∞$
n=0

%
(1 + 2m)(1 + 2n)e

(βγ)
ij(m,n)Pm(ζ

(β)
2 )Pn(ζ

(γ)
3 ) (16)

σ
(βγ)
ij =

∞$
m=0

∞$
n=0

%
(1 + 2m)(1 + 2n)τ

(βγ)
ij(m,n)Pm(ζ

(β)
2 )Pn(ζ

(γ)
3 ) (17)

where the non-dimensional variables ζ(.)i , deÞned in the interval −1 ≤ ζ
(.)
i ≤ 1, are given in terms of the

local subcell coordinates as ζ(β)2 = ȳ
(β)
2 /(h

(q)
β /2), and ζ

(γ)
3 = ȳ

(γ)
3 /(l

(r)
γ /2). For the given displacement

Þeld representation, the upper limits on the summations in Eq. (16) become 1. The upper limits on the
summations in Eq. (17) are chosen so that an accurate representation of the stress Þeld (which depends on
the amount of the inelastic ßow) is obtained within each subcell, Aboudi et al. (1999). The coefÞcients
e
(βγ)
ij(m,n), τ

(βγ)
ij(m,n) in the above expansions are determined as described below.

The strain coefÞcients e(βγ)ij(m,n) in subcell (βγ) of cell (q, r) are explicitly determined in terms of the
displacement Þeld using the orthogonal properties of Legendre polynomials. The non-zero components are
given as follows (omitting (q, r))

e
(βγ)
11(0,0) = $̄11

e
(βγ)
22(0,0) = $̄22 +W

(βγ)
2(10)

e
(βγ)
22(1,0) =

√
3

2
h
(q)
β W

(βγ)
2(20)

e
(βγ)
33(0,0) = $̄33 +W

(βγ)
3(01)

e
(βγ)
33(0,1) =

√
3

2
l(r)γ W

(βγ)
3(02)

e
(βγ)
23(0,0) = $̄23 +

1

2
(W

(βγ)
2(01) +W

(βγ)
3(10))

e
(βγ)
23(1,0) =

√
3

4
h
(q)
β W

(βγ)
3(20)

e
(βγ)
23(0,1) =

√
3

4
l(r)γ W

(βγ)
2(02)

e
(βγ)
13(0,0) = $̄13 +

1

2
W
(βγ)
1(01)

e
(βγ)
13(0,1) =

√
3

4
l(r)γ W

(βγ)
1(02)
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e
(βγ)
12(0,0) = $̄12 +

1

2
W
(βγ)
1(10)

e
(βγ)
12(1,0) =

√
3

4
h
(q)
β W

(βγ)
1(20) (18)

It should be noted that e(βγ)ij(0,0) provide the average strains in subcell (βγ) of cell (q, r).

The stress coefÞcients τ (βγ)ij(m,n) in subcell (βγ) of cell (q, r) are expressed in terms of the strain co-
efÞcients, thermal stress and the unknown inelastic strain distributions, by Þrst substituting the Legendre
polynomial representations for the total strain and stress into the constitutive equations, Eq. (8), and then
utilizing the orthogonality of Legendre polynomials:

τ
(βγ)
ij(m,n) = C

(βγ)
ijkl e

(βγ)
kl(m,n) −R

(βγ)
ij(m,n) − σ

T (βγ)
ij δm0δ0n (19)

The R(βγ)ij(m,n) terms represent the inelastic stress distributions calculated in the following manner

R
(βγ)
ij(m,n) =

1

2
µ(βγ)

%
(2m+ 1)(2n+ 1)

! 1

−1

! 1

−1
$
I(βγ)
ij Pm(ζ

(β)
2 )Pn(ζ

(γ)
3 )dζ

(β)
2 dζ

(γ)
3 (20)

Note that in both Eqs. (19) and (20) the cell labeling (q, r) has been omitted.
In the course of satisfying the equilibrium equations in a volumetric sense, it is convenient to deÞne the

following stress quantities:

[S
(βγ)
ij(m,n)]

(q,r) =
1

h
(q)
β l

(r)
γ

! h
(q)
β /2

−h(q)β /2

! l
(r)
γ /2

−l(r)γ /2
σ
(βγ)
ij (ȳ

(β)
2 )m (ȳ

(γ)
3 )ndȳ

(β)
2 dȳ

(γ)
3 (21)

For m = n = 0, Eq. (21) provides the average stresses in the subcell, whereas for other values of (m,n)
higher-order stresses are obtained that are needed to describe the governing Þeld equations of the contin-
uum. These stress quantities can be evaluated explicitly in terms of the unknown coefÞcients W (βγ)

i(mn) by
performing the required volume integration upon substituting Eqs. (8), (10) and (11)-(13) in Eq. (21). This
yields the following non-vanishing zeroth-order and Þrst-order stress components in terms of the unknown
coefÞcients in the displacement Þeld expansion (omitting (q, r)):

S
(βγ)
11(0,0) = C

(βγ)
11 $̄11 +C

(βγ)
12 (W

(βγ)
2(10) + $̄22) +C

(βγ)
13 (W

(βγ)
3(01) + $̄33)− Γ

(βγ)
1 ∆T −R(βγ)11(0,0) (22)

S
(βγ)
11(1,0) =

1

4
h
(q)2
β C

(βγ)
12 W

(βγ)
2(20) −

1

2
√
3
h
(q)
β R

(βγ)
11(1,0) (23)

S
(βγ)
11(0,1) =

1

4
l(r)2γ C

(βγ)
13 W

(βγ)
3(02) −

1

2
√
3
l(r)γ R

(βγ)
11(0,1) (24)

with similar expressions for the other normal stress components, and

S
(βγ)
23(0,0) = C

(βγ)
44 (2$̄23 +W

(βγ)
2(01) +W

(βγ)
3(10))−R

(βγ)
23(0,0) (25)

S
(βγ)
23(1,0) =

1

4
h
(q)2
β C

(βγ)
44 W

(βγ)
3(20) −

1

2
√
3
h
(q)
β R

(βγ)
23(1,0) (26)

S
(βγ)
23(0,1)

=
1

4
l(r)2γ C

(βγ)
44 W

(βγ)
2(02)

− 1

2
√
3
l(r)γ R

(βγ)
23(0,1)

(27)

S
(βγ)
13(0,0) = C

(βγ)
55 (2$̄13 +W

(βγ)
1(01))−R

(βγ)
13(0,0) (28)
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S
(βγ)
13(0,1) =

1

4
l(r)2γ C

(βγ)
55 W

(βγ)
1(02) −

1

2
√
3
l(r)γ R

(βγ)
13(0,1) (29)

S
(βγ)
12(0,0) = C

(βγ)
66 (2$̄12 +W

(βγ)
1(10))−R

(βγ)
12(0,0) (30)

S
(βγ)
12(1,0) =

1

4
h
(q)2
β C

(βγ)
66 W

(βγ)
1(20) −

1

2
√
3
h
(q)
β R

(βγ)
12(1,0) (31)

where contracted notation has been employed for the stiffness elements C(βγ)ijkl .
Subsequently, satisfaction of the zeroth, Þrst, and second moments of the equilibrium equations (6) re-

sults in the following 12 relations among the the volume-averaged Þrst-order stresses S(βγ)ij(m,n) in the different
subcells (βγ) of the (q, r) cell, after lengthy algebraic manipulations

[S
(βγ)
2j(1,0)/h

2
β + S

(βγ)
3j(0,1)/l

2
γ]
(q,r) = 0 j = 1, 2, 3 (32)

The continuity of tractions at the subcell interfaces within each interior cell, and between adjacent cells,
imposed in an average sense, can be shown to reduce to the following relations which are obtained from the
Þrst four equations of (14) after some algebraic manipulations,

[−12S(1γ)2j(1,0)/h1 + S
(2γ)
2j(0,0) − 6S

(2γ)
2j(1,0)/h2]

(q,r) − [S(2γ)2j(0,0) + 6S
(2γ)
2j(1,0)/h2]

(q−1,r) = 0 (33)

[−S(1γ)2j(0,0) +
1

2
S
(2γ)
2j(0,0) − 3S

(2γ)
2j(1,0)/h2]

(q,r) +
1

2
[S
(2γ)
2j(0,0) + 6S

(2γ)
2j(1,0)/h2]

(q−1,r) = 0 (34)

[−12S(β1)3j(0,1)/l1 + S
(β2)
3j(0,0) − 6S

(β2)
3j(0,1)/l2]

(q,r) − [S(β2)3j(0,0) + 6S
(β2)
3j(0,1)/l2]

(q,r−1) = 0 (35)

[−S(β1)3j(0,0) +
1

2
S
(β2)
3j(0,0) − 3S

(β2)
3j(0,1)/l2]

(q,r) +
1

2
[S
(β2)
3j(0,0) + 6S

(β2)
3j(0,1)/l2]

(q,r−1) = 0 (36)

where j = 1, 2, and 3. The details of derivation of equations similar to Eqs. (32)-(36) have been provided
by Aboudi et al. (1996) for a more general case of a microstructure containing periodic inclusions in the
out-of-plane direction.
Equations (33)-(36) provide 24 additional relations among the zeroth-order and Þrst-order stresses.

These relations together with Eq. (32), can be expressed in terms of the unknown coefÞcients W (βγ)
i(mn)

by making use of Eqs. (22)-(31), providing a total of 36 of the required 60 equations necessary for the
determination of these coefÞcients in the cell (q, r).
The additional 24 relations necessary to determine the unknown coefÞcients in the displacement Þeld

expansion are subsequently obtained by imposing displacement continuity conditions on an average basis at
each subcell and cell interface. This produces, upon use of the last four equations of (14),

[W
(1γ)
i(00) +

1

2
h1W

(1γ)
i(10) +

1

4
h21W

(1γ)
i(20)]

(q,r) = [W
(2γ)
i(00) −

1

2
h2W

(2γ)
i(10) +

1

4
h22W

(2γ)
i(20)]

(q,r) (37)

[W
(2γ)
i(00) +

1

2
h2W

(2γ)
i(10) +

1

4
h22W

(2γ)
i(20)]

(q,r) = [W
(1γ)
i(00) −

1

2
h1W

(1γ)
i(10) +

1

4
h21W

(1γ)
i(20)]

(q+1,r) (38)

[W
(β1)
i(00)

+
1

2
l1W

(β1)
i(01)

+
1

4
l21W

(β1)
i(02)

](q,r) = [W
(β2)
i(00)

− 1
2
l2W

(β2)
i(01)

+
1

4
l22W

(β2)
i(02)

](q,r) (39)

[W
(β2)
i(00) +

1

2
l2W

(β2)
i(01) +

1

4
l22W

(β2)
i(02)]

(q,r) = [W
(β1)
i(00) −

1

2
l1W

(β1)
i(01) +

1

4
l21W

(β1)
i(02)]

(q,r+1) (40)

where i = 1, 2, and 3, which comprise the required additional 24 relations.
The equilibrium relations, Eqs. (32), together with the traction and displacement continuity conditions

Eqs. (33)-(36) and (37)-(40), respectively, form 60 equations in the 60 unknownsW (βγ)
i(mn) which govern the
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equilibrium of a subcell (βγ) within an interior cell (q, r); q = 2, ...,Nq − 1, r = 2, ..., Nr − 1. For the
boundary cells q = 1,Nq and r = 1, Nr a different treatment must be applied.
For the boundary cell (1, r), the above relations are operative, except Eqs. (33) and (34), which follow

from the continuity of tractions between a given cell and the preceding one (since cell (0, r) does not exist).
These 12 equations must be replaced by the conditions of continuity of tractions at the interior interfaces
within cell (1, r) (imposed in the average sense), and by the conditions that the ßuctuating displacements
are periodic. It follows, by employing the third set of relations in (15), that

[W
(1γ)
i(00) −

1

2
h1W

(1γ)
i(10) +

1

4
h21W

(1γ)
i(20)]

(1,r) = [W
(2γ)
i(00) +

1

2
h2W

(2γ)
i(10) +

1

4
h22W

(2γ)
i(20)]

(Nq,r) (41)

where i = 1, 2, and 3. Both conditions provide the required 12 relations to be used for cell (1, r).
For the boundary cell (Nq, r), the previously derived governing equations are operative except for the

6 relations given by Eqs. (38), which are obviously not applicable (since cell (Nq + 1, r) does not exist).
These are replaced by the conditions that the tractions are periodic. Thus the Þrst set of relations in (15),
reproduced below for convenience, provides the 6 equations to be used for cell (Nq, r)

lγ/2!
−lγ/2

σ
(1γ)
2j |(1,r)

y
(1)
2 =−h1/2

dy
(γ)
3 =

lγ/2!
−lγ/2

σ
(2γ)
2j |(Nq ,r)

y
(2)
2 =h2/2

dy
(γ)
3 (42)

where the stresses σ(βγ)ij are given by Eq. (8).
Similar treatments hold for boundary cells (q, 1) and (q,Nr). Thus the 12 equations (35)-(36) are

obviously not applicable in cell (q, 1) and should be replaced by the conditions of continuity of tractions
at the interior interfaces within this cell (imposed in the average sense), and by the conditions that the
ßuctuating displacements are periodic. The latter yield according to the fourth set of relations in (15)

[W
(β1)
i(00) −

1

2
l1W

(β1)
i(01) +

1

4
l21W

(β1)
i(02)]

(q,1) = [W
(β2)
i(00) +

1

2
l2W

(β2)
i(01) +

1

4
l22W

(β2)
i(02)]

(q,Nr) (43)

For the boundary cell (q,Nr), Eqs. (40) are not operative and they should be replaced by the periodicity of
tractions which is given by the second set of relations in (15), reproduced below for convenience,

hβ/2!
−hβ/2

σ
(β1)
3j |(q,1)

y
(1)
3 =−l1/2

dy
(β)
2 =

hβ/2!
−hβ/2

σ
(β2)
3j |(q,Nr)

y
(2)
3 =l2/2

dy
(β)
2 (44)

Consequently, the governing equations for the interior and boundary cells form a system of 60NqNr
algebraic equations in the unknown coefÞcientsW (βγ)

i(mn). The Þnal form of this system of equations can be
symbolically represented by

KU = f + g (45)

where the structural stiffness matrixK contains information on the geometry and thermomechanical prop-
erties of the materials within the individual subcells (βγ) of the cells comprising the multiphase periodic
composite. The displacement vectorU contains the unknown displacement coefÞcients in each subcell, i.e.,

U = [U
(11)
11 , ...,U

(22)
NqNr

] (46)

where in subcell (βγ) of cell (q, r) these coefÞcients are

U(βγ)
qr = [Wi(00),Wi(10),Wi(01),Wi(20),Wi(02)]

(βγ)
qr i = 1, 2, 3
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The mechanical force vector f contains information on the applied average strains $̄ij and the imposed tem-
perature deviation∆T , and the inelastic force vector g appearing on the right-hand side of Eq. (45) contains
the inelastic effects given in terms of the integrals of the inelastic stress distributions that are represented by
the coefÞcients R(βγ)ij(m,n). These integrals depend implicitly on the elements of the displacement coefÞcient
vector U, requiring an incremental procedure for the solution of Eq. (45) at each point along the loading
path.
A careful check of the preceding equations reveals that the equations that govern the local normal and

in-plane (2-3) shear deformations are coupled, thus providing the necessary shear coupling effects. On
the other hand, these equations are not coupled to the axial shear deformations (1-2 and 1-3). Thus the
above system, Eq. (45), can be decoupled in practical applications and solved for the normal and transverse
shear deformations (with 40NqNr algebraic equations) separately from the axial shear deformations (with
20NqNr algebraic equations).

2.3 Global constitutive relations

Once the solutionU for a given set of average strains !̄ has been established, we can determine, in particular,
the average strains [e(βγ)(0,0)]

(q,r) in subcell (βγ) of the cell (q, r) given by (18). The average stress components

[S
(βγ)
ij(0,0)]

(q,r) in subcell (βγ) of the cell (q, r) are given by Eqs. (22), (25), (28) and (30). They can be
assembled in a compact form as follows

[S
(βγ)
(0,0)]

(q,r) = [C(βγ)e
(βγ)
(0,0) −R

(βγ)
(0,0) − Γ(βγ)∆T ](q,r) (47)

The equation relating the average total, plastic and thermal subcell strains, and macroscopically applied
strains is obtained by generalizing the localization relation given in Aboudi et al. (2001) for elastic phases
in the following manner

[e
(βγ)
(0,0)]

(q,r) = [A(βγ)!̄+D(βγ)](q,r) (48)

where [A(βγ)](q,r) is the mechanical strain concentration matrix of the subcell (βγ), and [D(βγ)](q,r) is a
vector that involves current thermo-inelastic effects in the subcell. In the absence of thermal and inelastic
effects this vector vanishes, and we can readily determine from (48) the mechanical strain concentration
matrix [A(βγ)](q,r) by solving the system (45) six consecutive times upon imposing a single non-zero com-
ponent of !̄ one at a time.
The thermo-inelastic analysis is performed in conjunction with an incremental procedure by imposing

a spatially uniform temperature∆T and the applied macroscopic strain !̄ in a stepwise manner. Thus for a
given value of applied thermomechanical loading, the average strains [e(βγ)(0,0)]

(q,r) in the subcell are obtained
from the solution of Eq. (45), and hence the matrix [D(βγ)](q,r) from (48) at the current loading level.
Substitution of (48) into (47) yields

[S
(βγ)
(0,0)]

(q,r) = [C(βγ)(A(βγ)!̄+D(βγ))−R(βγ)(0,0) − Γ(βγ)∆T ](q,r) (49)

The average stress in the multiphase periodic composite is determined from

σ̄ =
1

HL

Nq$
q=1

Nr$
r=1

2$
β,γ=1

h
(q)
β l

(r)
γ [S

(βγ)
(0,0)]

(q,r) (50)

Consequently, Eqs. (49)-(50) establish the effective constitutive law of the multiphase thermo-elastic
composite in the form

σ̄ = C∗ !̄− (σ̄I + σ̄T ) (51)
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whereC∗ is the effective elastic stiffness matrix of the composite which is given by

C∗ =
1

HL

Nq$
q=1

Nr$
r=1

2$
β,γ=1

h
(q)
β l

(r)
γ [C

(βγ)A(βγ)](q,r) (52)

and σ̄I and σ̄T denote the overall (macroscopic) inelastic and thermal stresses in the composite whose sum
is given by

σ̄I + σ̄T =
−1
HL

Nq$
q=1

Nr$
r=1

2$
β,γ=1

h
(q)
β l

(r)
γ [C

(βγ)D(βγ) −R(βγ)(0,0) − Γ(βγ)∆T ](q,r) (53)

Owing to the implicit dependence of D(βγ) on the inelastic and thermal effects, the right hand side of
(53) involves the combined inelastic and thermal contributions. It is very convenient to utilize the result
obtained by Levin (1967) to separate the global inelastic and thermal effects. The global thermal stress in
the multiphase composite σ̄T = Γ∗∆T ( Γ∗ is related to the effective coefÞcients of thermal expansion α∗
of the composite by Γ∗ = C∗α∗ ) is given in accordance with the Levin formula in terms of the mechanical
strain concentration matrices and the thermal stress vector in the individual phases by

σ̄T =
∆T

HL

Nq$
q=1

Nr$
r=1

2$
β,γ=1

h
(q)
β l

(r)
γ [A

tr(βγ)Γ(βγ)](q,r) (54)

where [Atr(βγ)](q,r) is the transpose of the mechanical strain concentration matrix [A(βγ)](q,r) of subcell
(βγ) within cell (q, r). This provides an additional check on the consistency of the proposed approach.
Consequently, by utilizing Eq. (54) the overall inelastic stress of the composite can be readily obtained from
(53), so that it can be represented in a closed-form manner, namely,

σ̄I =
−1
HL

Nq$
q=1

Nr$
r=1

2$
β,γ=1

h
(q)
β l

(r)
γ [C

(βγ)D(βγ) −R(βγ)(0,0) + (A
tr(βγ) − I)Γ(βγ)∆T ](q,r) (55)

We remark that, in the present framework, we have chosen to use the total formulation approximation
of the Þeld quantities which, in turn, results in the total form of the effective stress-strain relations for the
multiphase material given by (51). The actual integration of the inelastic effects represented by the vector
[D(βγ)](q,r) depends on the chosen inelastic constitutive model for the individual phases. In the present
paper, these effects are integrated using an iterative procedure within an incremental framework described
in the next section for the incremental plasticity theory representation of the inelastic phase response. In the
case of rate-dependent phase constitutive models, which the High-Fidelity Generalized Method of Cells�
framework can naturally accomodate, either an explicit or an implicit integration scheme may be employed.
This is in contrast with the approach employed by Paley and Aboudi (1992) where both total and rate
formulations were employed in approximating the subcell Þeld quantities. Similarly, rate formulations were
employed by Fotiu and Nemat-Nasser (1996) and Walker et al. (1994). Chaboche et al. (2001) employed
both rate (or tangential) and secant formulations in their extension of the Transformation Field Analysis
which also included the presence of evolving damage modeled using the continuum damage mechanics
approach. The present theoretical framework can also be reformulated in terms of rates, however for stand-
alone applications there is no clear advantage of the total vs rate approach.
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3 Numerical Results and Discussion

The focus of the extended High-Fidelity GeneralizedMethod of Cells� validation is both the accurate predic-
tion of the macroscopic inelastic response of a unidirectional metal matrix composite and the evolution of the
local stress and inelastic strain Þelds at different macroscopic loading levels. The multiple concentric cylin-
der model, brießy described in the Appendix for completeness, is employed to validate the High-Fidelity
Generalized Method of Cells� predictive capability under axisymmetric loading due to a spatially uniform
temperature change (Pindera et al., 1993), as well as under axial shear loading (Williams and Pindera 1997).
This model is chosen because it provides fully analytical solutions for the local stress and inelastic strain
Þelds, which satisfy the external boundary conditions together with the Þber/matrix interfacial displacement
and traction continuity conditions under such loading. Therefore, these solutions are exact and provide the
effective elastic and inelastic response of unidirectional composites with arbitrary Þber content. However,
because the solutions are based on a particular geometry and the concept of a representative volume element
which employs homogeneous boundary conditions to obtain solutions for the local Þelds, the functional
form of the local Þelds is not affected by the presence of adjacent Þbers. At dilute Þber volume fractions,
the presence of adjacent Þbers and the actual Þber array geometry has very little effect on both the local
Þeld quantities and the macroscopic response, and therefore the High-Fidelity Generalized Method of Cells
which is based on periodicity (and the use of periodic rather than homogeneous boundary conditions) can
be compared directly with the multiple concentric cylinder model predictions. This does not limit the gener-
ality of the conclusions obtained from such comparison due to the pronounced stress concentrations around
the Þber/matrix interface, which give rise to the evolution of the local stress and inelastic strain Þelds whose
complexity depends on the loading type. For instance, under axisymmetric loading, the inelastic strain Þeld
evolution depends only on the radial coordinate whereas under axial shear loading the angular dependence
is also present, producing stress and inelastic strain Þelds that are two-dimensional. It is both the charac-
ter and the magnitude of these local stress and inelastic strain Þelds for dilute Þber volume fractions that
must be reproduced by the High-Fidelity Generalized Method of Cells, upon comparison with the multiple
concentric cylinder model�s predictions, that will validate the theory�s predictive capability. Alternatively,
at non-dilute Þber volume fractions, the presence of adjacent Þbers will affect the local stress and inelas-
tic strain Þelds. Therefore, the theory�s predictions are expected to reßect this interaction relative to the
multiple concentric cylinder model which does not directly account for the adjacent Þbers� presence. Since
the multiple concentric cylinder model cannot be used to generate a solution under transverse loading, the
Þnite-element method was employed for this loading type to validate the theory�s predictive capability.

Table 1. Elastic and thermal parameters of the transversely isotropic graphite Þber.

EA (GPa) νA ET (GPa) νT GA (GPa) αA (10−6/◦C) αT (10−6/◦C)
388.20 0.41 7.60 0.45 14.90 −0.68 9.74

Table 2. Elastic, plastic and thermal parameters of the isotropic aluminum matrix.

E (GPa) ν G (GPa) α (10−6/◦C) σy (MPa) Es (GPa)
72.40 0.33 27.22 22.5 286.67 11.70

A graphite/aluminum (gr/al) system is considered with the thermal, elastic and plastic moduli of the in-
dividual constituents given in Tables 1 and 2. The graphite Þber is linearly elastic and transversely isotropic,
and the isotropic aluminummatrix is modeled using the classical incremental plasticity theory with isotropic
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hardening. For this inelastic constitutive model, Mendelson�s method of successive iterations described
brießy below, and in detail elsewhere (Mendelson, 1986; Williams and Pindera, 1997), is employed to solve
the system of equations (45) for the unknown coefÞcientsW (βγ)

i(mn) and the plastic strain distributions $
p(βγ)
ij in

the individual subcells. Towards this end, the plastic strain Þeld in the (βγ) subcell at the current load level
is expressed in terms of the known initial distribution from the preceding loading state plus an increment
that results from the imposed load increment,

$
p(βγ)
ij (ȳ

(β)
2 , ȳ

(γ)
3 )|current = $p(βγ)ij (ȳ

(β)
2 , ȳ

(γ)
3 )|previous + d$p(βγ)ij (ȳ

(β)
2 , ȳ

(γ)
3 ) (56)

The plastic strain increments at the individual locations within the subcell are calculated using the Prandl-
Reuss ßow rule expressed in terms of so-called modiÞed total strain deviators e!ij , rather than deviatoric
stresses, as follows (omitting the superscript (βγ) for notational clarity)

d$pij =
e
!
ij

eeff
dεp (57)

where e!ij = εij − 1/3εkkδij − $pij |previous, eeff =
&
2/3e

!
ije

!
ij , and the effective plastic strain increment

dεp is
dεp = eeff − σ/3µ (58)

where µ is the shear modults.
Without loss of generality in validating the theory�s predictive capability, we take the elastoplastic re-

sponse of the aluminum matrix to be bilinear, with the effective stress σ(εp) given by

σ(εp) = σy +Hpε
p (59)

where σy is the yield stress in simple tension, andHp is the slope of the effective stress-plastic strain curve,
related to the secondary modulus Es in the bilinear stress-strain representation of the elastoplastic response
(see Table 2) as follows

Hp =
EEs
E −Es (60)

where E is the Young�s modulus of the isotropic aluminum.
The above form of the incremental plasticity equations is completely equivalent to the classical one,

but has the added advantage of producing very quick convergence when used in conjunction with Mendel-
son�s iterative scheme for the solution of Eq. (45), as demonstrated in our previous investigations. The
implementation of these equations is facilitated by the following loading condition for plastic loading

1− σ

3µeeff
> 0 (61)

shown previously to produce very fast convergence.
The Þber volume fractions (vf ) of the gr/al composite employed in the validation studies are 0.05 and

0.25, respectively, which henceforth will be referred to as dilute and non-dilute Þber volume fractions.
Figure 3 shows the volume discretizations of the repeating unit cell for these two cases. In both cases, the
unit cells contain 36 × 36 subcells appropriately dimensioned to approximate the circular Þber shape with
sufÞcient accuracy. This was accomplished using a commercial optimization code.
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Figure 3. Volume discretization of the repeating unit cells employed in the analysis of unidirectional Þber-
reinforced, metal-matrix composites: (left) vf = 0:05; (right) vf = 0:25.

3.1 Axisymmetric thermal loading

As the Þrst step, we compare the predictions of the High-Fidelity Generalized Method of Cells and the
multiple concentric cylinder model for the thermal response of the gr/al unidirectional composite during
spatially uniform cooldown from 500◦ C to 25◦ C. This is the simplest case which results in axisymmetric
displacement, stress and (plastic) strain Þelds within the individual phases of the multiple concentric cylinder
model. As is well-known, the macroscopic axial response for this loading case can be predicted with good
accuracy by the simplest micromechanics models irrespective of the Þber volume fraction. Thus a true test
of the theory�s predictive capability is the evolution of the plastic strain Þeld in the aluminum phase as a
function of temperature, which should retain an axisymmetric character for the dilute (i.e., noninteracting)
Þber volume fraction composite. This is the focus of this section.
Figure 4 presents the macroscopic axial and transverse response of the gr/al unidirectional composite

with the two Þber volume fractions as a function of temperature generated by the two models, which pro-
vides information on the initiation of yielding in the aluminum phase. For the dilute Þber volume fraction
composite, Fig. 4(top), yielding initiates slightly above 300◦ C, while in the non-dilute case this occurs at
around 250◦ C, Fig. 4(bottom). In order to obtain initiation of yielding for the two cases at comparable
temperature levels when cooled from a common temperature, the yield stress of the aluminum phase in
the dilute Þber volume fraction composite was taken to be one fourth of the yield stress employed in the
non-dilute Þber volume fraction composite reported in Table 2.
As expected, both models predict virtually identical macroscopic thermal response in the axial direction

for the dilute and non-dilute Þber volume fraction cases. The same observation holds true for the effective
transverse response. Based on the macroscopic thermal response shown in Fig. 4(top), the effective plastic
strain distributions for the dilute Þber volume fraction composite have been generated at 300◦, 200◦ and 25◦
C using the High-Fidelity Generalized Method of Cells and the multiple concentric cylinder model. The
effective plastic strain distributions are calculated by integrating the effective plastic strain increment d¹"p at
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each load increment along the entire loading history at the particular point, i.e.,

ε̄p =

!
dε̄p

where dε̄p is given by Eq. (58). These distributions are shown in Fig. 5. In this dilute Þber volume
fraction case, little interaction is expected between adjacent Þbers in the periodic square Þber array model
employed in the High-Fidelity Generalized Method of Cells. Thus the character of the effective plastic strain
distribution in the aluminum phase predicted by this model should be essentially axisymmetric and therefore
comparable to that predicted by the multiple concentric cylinder model. This is indeed the case with respect
to both the distribution as well as the magnitude, as observed in Fig. 5. It is remarkable that the magnitude
of the effective plastic strain Þeld is predicted with high accuracy by the High-Fidelity Generalized Method
of Cells even during the initial stages of yield initiation at 300◦ C shown in the top portion of Fig. 5. This
demonstrates that the method is sufÞciently sensitive to capture accurately the plastic strain Þeld even when
the effective plastic strain magnitudes are very small.
In the case of the non-dilute Þber volume fraction composite, the effective plastic strain distributions

have been generated at 200◦, 100◦ and 25◦ C, based on the macroscopic thermal response given in Fig.
4(bottom). These distributions are shown in Fig. 6. During the initial stages of yield initiation, the effective
plastic strain distribution predicted by the High-Fidelity Generalized Method of Cells at 200◦ C retains an
axisymmetric character and compares favorably with the multiple concentric cylinder model prediction. The
interaction with adjacent Þbers becomes apparent at the lower temperatures as the magnitude of the effective
plastic strain predicted by the high-Þdelity model within the plastic zone increases, losing its axisymmetric
character away from the Þber. In the immediate vicinity of the Þber/matrix interface, however, the axisym-
metric character of the effective plastic strain distribution is preserved and compares very well in magnitude
with the multiple concentric model prediction.
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Figure 4. Macroscopic thermal response of a unidirectional gr/al composite during spatially uniform cooldown
from 500◦ C to 25◦ C: (top) vf = 0:05; (bottom) vf = 0:25. (Note that for vf = 0:05, an altered matrix
yield stress, ¾y = 286:67=4MPa was employed, see Table 2).

NASA/TM—2002-211469 19



Figure 5. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite with
vf = 0:05; cooled from 500◦ C, at 300◦ C (top), 200◦ C (middle), and 25◦ C (bottom). Comparison of the
High-Fidelity Generalized Method of Cells predictions (left column) with the multiple concentric cylinder
results (right column).
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Figure 6. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite with
vf = 0:25; cooled from 500◦ C, at 200◦ C (top), 100◦ C (middle), and 25◦ C (bottom). Comparison of the
High-Fidelity Generalized Method of Cells predictions (left column) with the multiple concentric cylinder
results (right column).
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3.2 Axial shear loading

In comparing the predictions of both models for the axial shear loading case in the x1−x3 plane (see Fig. 1),
the following features of the local stress Þelds should be kept in mind. For the dilute Þber volume fraction
composite in the elastic region, the σ13 shear stress distribution in the Þber region obtained from the multiple
concentric cylinder model is uniform while the σ12 shear stress is zero. The evolution of plastic deformation
in the matrix phase introduces slight nonuniformities in these distributions. This is also true in the non-dilute
case since this model does not account directly for the interaction due to adjacent Þbers. Further, the σ13
shear stress distribution is symmetric with respect to the horizontal and vertical planes through the Þber�s
center, while the σ12 shear stress distribution is antisymmetric irrespective of the Þber volume fraction at all
loading levels. With the exception of the interaction effect due to adjacent Þbers in the non-dilute case, the
above features of the local stress Þelds must be captured by the High-Fidelity Generalized Method of Cells.
We start by presenting the macroscopic shear stress-strain predictions of the two models due to shearing

by the applied average strain $13. These responses are given in Fig. 7 for both the dilute and non-dilute cases,
and form the basis for the microscopic stress and effective plastic strain distributions presented at different
applied shear strain levels in the subsequent Þgures. In generating the shear response, the properties of
the aluminum matrix given in Table 2 were employed while the Þber was assumed to be isotropic with the
shear modulus G = 137.7 GPa, following Williams and Pindera (1997). This produces a Þber/matrix shear
modulus ratio of approximately 5, which provides a greater property mismatch than that obtained using the
properties of the transversely isotropic graphite Þber given in Table 1.
In the case of the dilute Þber volume fraction composite, Fig. 7(top), the predictions of the High-Fidelity

Generalized Method of Cells and the multiple concentric cylinder model are identical in both the elastic
and elastoplastic region, with macroscopic yielding occuring around $13 = 0.3%. Based on the observed
macroscopic response, the microscopic stress distributions are given at $13 = 0.1, 0.5, and 0.75%, while
the microscopic effective plastic strain distributions are given at $13 = 0.3, 0.5, and 0.75%. The elastic
shear stress distributions at $13 = 0.1% are included because the character of the microscopic stress Þeld is
affected by the growth of the plastic zone in the aluminum matrix even at low Þber volume fractions, unlike
the axisymmetric thermal loading case discussed in the previous section. In the case of the non-dilute Þber
volume fraction composite, Fig. 7(bottom), the predictions of the High-Fidelity GeneralizedMethod of Cells
and the multiple concentric cylinder model are also identical in the elastic region, with macroscopic yielding
occuring around $13 = 0.225%. In the elastoplastic region, the macroscopic shear response predicted by
the High-Fidelity Generalized Method of Cell is slightly lower relative to the multiple concentric cylinder
model prediction, indicating that the interaction with adjacent Þbers is becoming noticeable. Based on the
observed macroscopic response, the microscopic stress distributions are given at $13 = 0.1, 0.5, and 0.75%
as in the dilute case, while the microscopic effective plastic strain distributions are given at $13 = 0.25, 0.5,
and 0.75%.
The microscopic shear stress σ13 distributions predicted by the High-Fidelity Generalized Method of

Cells and the multiple concentric cylinder model for the dilute case are compared in Fig. 8 at the given
applied shear strain levels. Both the character and the magnitude of the local shear stress Þeld is captured
with very good accuracy by the high-Þdelity model in this dilute case, including the initially nearly uniform
shear stress distribution in the Þber and the highly nonuniform distribution in the matrix phase in the elastic
region, and the effect of matrix plasticity on these distributions with progressive loading. Of particular
signiÞcance is the symmetry of the σ13 Þeld with respect to the horizontal and vertical planes through the
Þber�s center during all stages of loading. The effect of plasticity on the character of the shear stress Þeld
is also dramatic, and perhaps more apparent, in the case of the σ12 distributions presented in Fig. 9 due
to the antisymmetric character of the stress Þeld with respect to the horizontal and vertical planes. In this
case, yielding of the matrix phase skews the σ12 distributions away from the bisectors of the horizontal
and vertical axes through the Þber�s center towards the vertical axis as observed in the middle and bottom
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portions of Fig. 9. This phenomenon is very well captured by the High-Fidelity Generalized Method of
Cells, as is the perfect antisymmetry of the σ12 Þeld with respect to the horizontal and vertical planes.
As in the preceding case, the magnitude of the σ12 Þeld predicted by the high-Þdelity model compares
very well with the multiple concentric cylinder model prediction at the three applied shear strain levels. It is
therefore not surprising that the effective plastic strain distributions predicted by the high-Þdelity model also
compare very well with the multiple concentric cylinder model predictions both in character and magnitude,
as observed in Fig. 10. This is true even during the early stages of yield initiation when the effective plastic
strain magnitudes are very small.
In the non-dilute case, the effect of adjacent Þbers on the microscopic shear stress Þelds generated by

the High-Fidelity Generalized Method of Cells becomes apparent. The magnitude of this effect depends on
the particular shear stress component and the extent of plastic deformation. In the case of the shear stress
σ13 distributions shown in Fig. 11, the shear stress in the Þber is nearly uniform in the elastic region and
compares very well in magnitude with the multiple concentric cylinder model result (Fig. 11(top)). The
matrix shear stress Þeld is also well captured by the high-Þdelity model. As the extent of the plastic zone
grows, the interaction with adjacent Þbers becomes more apparent both in the Þber and the matrix phases.
SpeciÞcally, the high-Þdelity model predicts greater extent of the Þber shear stress nonuniformity, and a
smaller shear stress gradient in the matrix phase in the plane of shearing, relative to the multiple concentric
cylinder results.
In the case of the shear stress σ12 distributions shown in Fig. 12, the shear stress in the Þber becomes

nonuniform already in the elastic region. However, the basic character and magnitude of the shear stress
Þeld is essentially the same as that predicted by the multiple concentric cylinder model. As in the dilute
case, plastic deformation in the matrix phase skews the shear stress Þeld away from the bisectors of the
horizontal and vertical axes through the Þber�s center towards the vertical axis, albeit not to the same ex-
tent as in the dilute case and as predicted by the multiple concentric cylinder model. In general, in the
non-dilute case the overall character of the shear stress σ12 distributions in the elastoplastic region better
resembles the corresponding multiple concentric cylinder model predictions than does the character of the
σ13 distributions.
The inßuence of adjacent Þbers in the periodic array model employed by the High-Fidelity Generalized

Method of Cells is also apparent in the effective plastic strain distributions shown in Fig. 13 for the non-
dilute case. During the initial stages of yielding, this inßuence is not noticeable (Fig. 13(top)), but increases
at the higher levels of deformation (Fig. 13(middle and bottom)). SpeciÞcally, the constraint due to the
adjacent Þbers retards the growth of the plastic zone in the matrix phase in the direction normal to the
plane of shearing, and enhances it in the shearing plane itself. In the immediate vicinity of the Þber/matrix
interface, however, both the character and magnitude of the effective plastic strain Þeld predicted by the
high-Þdelity model compare very well with the multiple concentric cylinder model prediction.
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Figure 7. Macroscopic shear stress-strain response, ¾13 vs ²13, of a unidirectional gr/al composite due to
shearing in the x1 ¡ x3 plane: (top) vf = 0:05; (bottom) vf = 0:25. Comparison of the High-Fidelity
Generalized Method of Cells predictions with the multiple concentric cylinder model results. (Note that in
this case the graphite Þber is treated as isotropic with G = 137:7 GPa).
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Figure 8. Shear stress ¾13 distributions in the individual phases of a unidirectional gr/al composite with
vf = 0:05 at the applied average shear strain ²13 of 0:1% (top), 0:5% (middle), and 0:75% (bottom).
Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column). Colorbar in MPa. (Note that the dot at the Þber�s center is a
plotting artifact).
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Figure 9. Shear stress ¾12 distributions in the individual phases of a unidirectional gr/al composite with
vf = 0:05 at the applied average shear strain ²13 of 0:1% (top), 0:5% (middle), and 0:75% (bottom).
Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column). Colorbar in MPa.
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Figure 10. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite
with vf = 0:05 at the applied average shear strain ²13 of 0:3% (top), 0:5% (middle), and 0:75% (bottom).
Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column).
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Figure 11. Shear stress ¾13 distributions in the individual phases of a unidirectional gr/al composite with
vf = 0:25 at the applied average shear strain ²13 of 0:1% (top), 0:5% (middle), and 0:75% (bottom).
Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column). Colorbar in MPa. (Note that the dot at the Þber�s center is a
plotting artifact).
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Figure 12. Shear stress ¾12 distributions in the individual phases of a unidirectional gr/al composite with
vf = 0:25 at the applied average shear strain ²13 of 0:1% (top), 0:5% (middle), and 0:75% (bottom).
Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column). Colorbar in MPa.
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Figure 13. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite
with vf = 0:25 at the applied average shear strain ²13 of 0:3% (top), 0:5% (middle), and 0:75% (bottom).
Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column).
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3.3 Transverse normal loading

The commercial Þnite-element program ANSYS was employed to generate the response of the gr/al unidi-
rectional composite under transverse loading. ReÞned representations of the repeating unit cell containing
1,782 elements with 4,989 nodes for the dilute case, and 1,260 elements with 3,909 nodes for the non-dilute
case, were constructed using 8-noded, plane-strain quadrilateral elements. External loading was speciÞed
in the form of uniform displacements of opposite signs but equal magnitudes applied to the horizontal and
vertical boundaries of the unit cell under the condition of plane strain in the out-of-plane direction. This
type of loading represents pure shearing in the coordinate system rotated by 45◦ about the Þber�s center,
and provides a critical test of the High-Fidelity Generalized Method of Cells� predictive capabilities under
transverse loading. In the context of the Þnite-element analysis, it also eliminates the need for an iterative
solution procedure when transverse loading is applied in just one direction in order to ensure that the average
stress in the other direction remains zero. The same loading was employed to generate the High-Fidelity
Generalized Method of Cells results (i.e., $22 = −$33 with $11 = 0).
For this loading case, the actual properties of the transversely isotropic graphite Þber were employed in

the calculations. Therefore, the matrix is 3.58 times stiffer than the Þber in the loading plane (see Tables 1
and 2), in contrast with the axial shearing case where the Þber was approximately 5 times stiffer than the
matrix in the plane of shearing. The smaller transverse stiffness of the Þber relative to the matrix in the
present case is expected to produce substantially different trends than those observed in the axial shearing
case both at the macroscopic and microscopic scales, providing a completely different test for the High-
Fidelity Generalized Method of Cells� predictive capability. This is indeed the case as demonstrated Þrst
in Fig. 14 which provides the comparison between the high-Þdelity model and Þnite-element predictions
of the macroscopic stress-strain response for the two Þber volume fraction composites. SpeciÞcally, the
stress-strain response for the non-dilute case is lower relative to the dilute case. Further, there is virtually no
difference between the predictions of the two models for the two cases.
Included in Fig. 14 are the corresponding predictions of the original Generalized Method of Cells for the

two Þber fraction cases. As observed, the initial elastic response is very well captured by the Generalized
Method of Cells despite the inherent absence of shear coupling in this simpler micromechanical model. The
predictive capability of this model is also quite good in the elastoplastic region, but does depend on the Þber
volume fraction as expected. The reason for the original Generalized Method of Cells� ability to model the
macroscopic inelastic response of metal matrix composites with good accuracy will become apparent upon
examination of the internal stress Þelds.
Based on the macroscopic stress-strain curves, local Þeld quantities were generated at the applied $33

strain levels of 0.4 and 1.0%. Figure 15 shows the effective plastic strain distributions generated by the
High-Fidelity Generalized Method of Cells which can be compared with the corresponding distributions
generated by the Þnite-element model given in Fig. 16. As observed, both the magnitudes and the character
of the distributions are virtually the same at the two strain levels. In particular, for the dilute case, initiation
of yielding at the Þber/matrix interface at locations coincident with the loading axes is correctly captured by
the high-Þdelity model, as is the spread of the plastic zone at the Þnal macroscopic strain. Yielding in the
non-dilute case initiates halfway between adjacent Þbers along the line rotated 45◦ about the Þber�s center,
in contrast with the dilute case. This too is captured by the high-Þdelity model with excellent accuracy, as
is the effective plastic strain distribution at the Þnal macroscopic strain.
In order to highlight the differences between the High-Fidelity Generalized Method of Cells and the

original Generalized Method of Cells, Fig. 17 illustrates the inplane shear stress σ23 distributions generated
using the high-Þdelity model at the same applied $33 strain levels as those presented in Fig 16. Clearly, the
magnitude of the inplane shear stress is signiÞcant and cannot be neglected. The corresponding distributions
obtained from the Þnite-element analysis are shown in Fig. 18. Comparison of the two sets of predictions
reafÞrms the predictive capability of the high-Þdelity model. In stark contrast, the original Generalized
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Method of Cells predicts that the inplane shear stress distributions are identically zero, which is a direct
consequence of the absence of shear coupling. Apparently, the absence of shear coupling, while resulting in
poor prediction of local distributions of certain stress components, has little effect on the method�s ability to
accurately capture the macroscopic behavior.
In order to explain the original Generalized Method of Cells� capability to capture the macroscopic

response of metal matrix composites in the inelastic region with good accuracy, it is neccessary to examine
those stress distributions that are directly responsible for the inelastic behavior. In the case of the classical
incremental plasticity theory employed herein, it is necessary to examine the effective stress distributions.
These are illustrated in Figs. 19, 20, and 21 for the two Þber fraction cases generated at the same applied
macroscopic strain levels as above using the High-Fidelity Generalized Method of Cells, Þnite-element
analysis, and the original Generalized Method of Cells, respectively. Comparison of Figs. 19 and 20 leads
to the same conclusions regarding the predictive capability of the high-Þdelity model as the comparison
of the effective plastic strain distributions shown in Figs. 15 and 16. Examination of the effective stress
distributions generated using the original Generalized Method of Cells, Fig. 21, leads to the conclusion that
the essential features of these distributions are generally the same as those obtained from the high-Þdelity
model and the Þnite-element analysis, Figs. 19 and 20, even though the local details differ somewhat. This
explains the original Generalized method of Cells� ability to model the elastoplastic response of metal matrix
composites with sufÞcient accuracy.
Finally, Figs. 22, 23, and 24 present the corresponding hydrostatic stress distributions generated using

the High-Fidelity GeneralizedMethod of Cells, Þnite-element analysis, and the original GeneralizedMethod
of Cells, respectively. As in the preceding cases, comparison of Figs. 22 and 23 indicates that the high-
Þdelity model captures both the magnitude and local distributions of the hydrostatic stress with very good
accuracy relative to the Þnite-element predictions. In contrast, the accuracy with which these distributions
are captured by the original Generalized Method of Cells is quite poor. It is only in a gross average sense
that these distributions are accurate over large areas of the repeating unit cell, precluding the possibility of
accurately modeling local matrix degradation or failure due to the hydrostatic stress component.
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Figure 14. Macroscopic transverse stress-strain response, ¾33 vs ¹²33, of a unidirectional gr/al composite
due to loading in the x2 ¡ x3 plane by ²22 = ¡²33 with ²11 = 0: (top) vf = 0:05; (bottom) vf = 0:25.
Comparison of the High-Fidelity Generalized Method of Cells predictions with the results from the Þnite-
element analysis and the original General Method of Cells.
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Figure 15. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite at
the applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
High-Fidelity Generalized Method of Cells: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 16. Effective plastic strain distributions in the aluminum phase a unidirectional gr/al composite at
the applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
Þnite-element analysis: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 17. Inplane shear stress ¾23 distributions in the individual phases a unidirectional gr/al composite at
the applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
High-Fidelity Generalized Method of Cells: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 18. Inplane shear stress ¾23 distributions in the individual phases a unidirectional gr/al composite at
the applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
Þnite-element analysis: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 19. Effective stress distributions in the individual phases a unidirectional gr/al composite at the
applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
High-Fidelity Generalized Method of Cells: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 20. Effective stress distributions in the individual phases a unidirectional gr/al composite at the
applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
Þnite-element analysis: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 21. Effective stress distributions in the individual phases a unidirectional gr/al composite at the
applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
original Generalized Method of Cells: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 22. Hydrostatic stress distributions in the individual phases a unidirectional gr/al composite at the
applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
High-Fidelity Generalized Method of Cells: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 23. Hydrostatic stress distributions in the individual phases a unidirectional gr/al composite at the
applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
Þnite-element analysis: (top) vf = 0:05; (bottom) vf = 0:25.
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Figure 24. Hydrostatic stress distributions in the individual phases a unidirectional gr/al composite at the
applied average transverse strain ²33 of 0:4% (left column) and 1:0% (right column) obtained from the
original Generalized Method of Cells: (top) vf = 0:05; (bottom) vf = 0:25.

NASA/TM—2002-211469 43



4 Summary and Conclusions

A recently developed theory for periodic multiphase materials, called High-Fidelity Generalized Method
of Cells, which was previously limited to thermoelastic phases has been extended herein to admit inelastic
constitutive behavior of the individual phases. This extension has been carried out in a general fashion in
order to enable the use of different constitutive models for the phase behavior, including classical incre-
mental plasticity theory, creep models, as well as various uniÞed viscoplasticity theories. The theoretical
framework combines elements of the homogenization technique with the higher-order theory for function-
ally graded materials developed previously by the authors. These features provide a basis for consistent
approximation of the displacement Þeld at the local level together with consistent application of periodic
boundary conditions imposed on the deformation of the repeating unit cell, which characterizes the mater-
ial�s microstructure. Further, the higher-order displacement Þeld approximation at the local level employed
in the present approach provides the necessary coupling between the local normal and inplane shear stress
Þelds and the macroscopically applied loading. This coupling dramatically improves the accuracy of esti-
mating the local stress and inelastic strain Þelds relative to the original Generalized Method of Cells which
is based on a Þrst-order displacement approximation at the local level. The high-Þdelity model�s predictive
capability to capture both the macroscopic response and the local stress and inelastic strain Þelds has been
demonstrated through comparison with the results of two analytical solutions and Þnite-element element
analysis of the inelastic response of a unidirectional gr/al composite, based on the incremental plasticity
theory, subjected to different types of loading.
The primary result of the High-Fidelity Generalized Method of Cells is the closed-form constitutive

equation for the macroscopic thermoinelastic response of multiphase materials, subjected to arbitrary mul-
tiaxial macroscopic thermomechanical loading, which possess microstructures characterized by repeating
unit cells with arbitrary reinforcement distributions. This is a direct result of the use of periodic bound-
ary conditions that follow from the homogenization approach�s framework. Thus the macroscopic inelastic
response can be generated irrespective of whether or not a repeating unit cell possesses planes of mater-
ial symmetry. This can be done easily for any combination of macroscopically applied thermomechanical
loads, in contrast with the standard Þnite-element analyses of periodic composites. The repeating unit cell�s
construction is simple due to the employed volume discretization that produces a rectangular grid whose
subcells are appropriately assigned different material properties and dimensions so as to mimic a multiphase
material�s actual microstructure. Further, the computational speed with which the macroscopic inelastic
response and local stress and plastic strain Þelds are generated is sufÞciently fast (typically on the order of
a few minutes on the DEC-Alpha DS20E 6/667 machine for the investigated cases) for reasonably detailed
volume discretizations of a repeating unit cell. These features of the presented theory facilitate investiga-
tions of the impact of different materials architectures on both the macroscopic and local responses, taking
into account inelastic phase behavior, in an efÞcient and accurate manner. They also make it straightforward
to incorporate the theory into a structural analysis computer code as a subroutine.

NASA/TM—2002-211469 44



References
Aboudi, J., 1982. A continuum theory for Þber-reinforced elastic-viscoplastic composites, Int. J. Engineer-
ing Science, 20, 605-621.
Aboudi, J., 1996. Micromechanical analysis of composites by the method of cells - update, Applied Me-
chanics Reviews, 49(10), (Part 2), S83-S91.
Aboudi, J., Pindera, M-J., and Arnold, S. M., 1996. Thermoelastic theory for the response of materials
functionally graded in two directions, Int. J. Solids & Structures, 33(7), 931-966.
Aboudi, J., Pindera, M-J., and Arnold, S. M., 1999. Higher-order theory for functionally graded materials,
Composites: Part B (Engineering), 30(8), 777-832.
Aboudi, J., Pindera, M-J., and Arnold, S. M., 2001. Linear thermoelastic higher-order theory for periodic
multiphase materials, J. Applied Mechanics, 68(5), 697-707.
Arnold, S. M., Pindera, M-J., and Wilt, T. E., 1996. Inßuence of Þber architecture on the inelastic response
of metal matrix composites, Int. J. Plasticity, 12(4), 507-545.
Bednarcyk, B. A. and Arnold, S. M., 2001a. Micromechanics-based deformation and failure prediction for
longitudinally reinforced titanium matrix composites, Composites Science and Technology, 61, 705-729.
Bednarcyk, B. A. and Arnold, S. M., 2001b. Transverse tensile and creep modeling of continuously rein-
forced titanium composites with local debonding, Int. J. Solids & Structures (in press).
Chaboche, J. L., Kruch, S., Maire, J. F., and Pottier, J., 2001. Towards a micromechanics based inelastic and
damage modeling of composites, Int. J. Plasticity, 17, 411-439.
Dvorak, G. J., 1992. Transformation Þeld analysis of inelastic composite materials, Proc. Royal Society of
London, A431, 89-110.
Dvorak, G. J., 2000. Composite materials: inelastic behavior, damage, fatigue and fracture, In. J. Solids &
Structures, 37, 155-170.
Fotiu, P. A. and Nemat-Nasser, S., 1996. Overall properties of elastic-viscoplastic periodic composites, Int.
J. Plasticity, 12(2), 163-190.
Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids,
11, 357-372.
Kalamkarov, A. L. and Kolpakov, A. G., 1997. Analysis, Design and Optimization of Composite Structures,
John Wiley & Sons, New York.
Levin, V. M., 1967. On the coefÞcients of thermal expansion of heterogeneous materials, Mekh, Tverd. Tela
(in Russian), 1, p. 88. (see also: Mech. Solids, 2, 88-94, 1967, English transl.).
Mendelson, A., 1986. Plasticity: Theory and Application, Krieger Publishing Co., Malabar, FL (reprint
edition).
Pahr, D. H. and Arnold, S. M., 2001. The applicability of the generalized method of cells for analyzing dis-
continuously reinforced composites, NASA/TM-2001-211165, NASA-Glenn Research Center, Cleveland,
OH.
Paley, M. and Aboudi, J., 1992. Micromechanical analysis of composites by the generalized method of cells,
Mechanics of Materials, 14, 127-139.
Parton, V. Z. and Kudryavtsev, B. A., 1993. Engineering Mechanics of Composite Structures, CRC Press,
Boca Raton, FL.
Pindera, M-J., Freed, A. D., and Arnold, S. M., 1993. Effects of Þber and interfacial layer morphologies on
the thermoplastic response of metal matrix composites, Int. J. Solids & Structures, 30(9), 1213-1238.

NASA/TM—2002-211469 45



Pindera, M-J. and Bednarcyk, B. A., 1999. An efÞcient implementation of the generalized method of cells
for unidirectional, multi-phased composites with complex microstructures, Composites: Part B (Engineer-
ing), 30(1), 87-105.
Sanchez-Palencia, E., 1980. Non-nomogeneous media and vibration theory, Lecture Notes in Physics, 127,
Springer-Verlag, Berlin (New York).
Sun, C. T. and Vaidya, R. S., 1996. Prediction of composite properties from a representative volume element,
Composites Science and Technology, 56, 171-179.
Suquet, P. M., 1987. Elements of homogenization for inelastic solid mechanics, Lecture Notes in Physics,
272, pp. 193-278. Springer-Verlag, Berlin (New York).
Walker, K. P., Freed, A. D., and Jordan, E. H., 1994. Thermoviscoplastic analysis of Þbrous periodic
composites by the use of triangular subvolumes, Composites Science and Technology, 50(1), 71-84.
Williams, T. O. and Pindera, M-J., 1997. An analytical model for the inelastic axial shear response of
unidirectional metal matrix composites, Int. J. Plasticity, 13(3), 261-289.

NASA/TM—2002-211469 46



Appendix: Multiple Concentric Cylinder Model

A brief outline of the solutions for the displacement Þeld, from which the corresponding stress Þeld can
be generated, in a unidirectional elastoplastic composite subjected to axisymmetric and axial shear loading
is given in this section based on the multiple concentric cylinder model. The solutions are fully analytical
and therefore provide a good basis for comparison with the predictions of the outlined higher-order theory
despite the differences in the model geometries. The cylindrical coordinate system x−r−θ (where x denotes
the direction along the cylinder�s axis) is used to formulate the problem and solve for the displacement and
stress Þelds in a multilayered cylinder consisting of an elastic core and an arbitrary number of fully bonded
inelastic concentric shells. The elastic core is denoted by the superscript 1 and the outermost cylindrical
shell by n. The inner radius of the kth shell is denoted by rk−1 and the outer radius by rk.

Axisymmetric loading

Under axisymmetric loading that may involve a combination of a macroscopically uniform axial stress
or strain, uniform temperature Þeld and biaxial tension/compression, the displacement Þeld in the individual
layers of a multiple concentric cylinder has the following form

ux = ε
0
xx x, ur = ur(r), uθ = 0 (A1)

where ε0xx is the uniform axial strain component. Therefore, the equilibrium equations in the individual
layers expressed in terms of displacements reduce to the single ordinary differential equation

d2ur
dr2

+
1

r

dur
dr

− ur
r2
=
1

r

$
i=x,θ,r

(Cri −Cθi)
Crr

εinii (r) +
$
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Cri
Crr

dεinii (r)

dr
(A2)

where εinii (r) are the inelastic strain distributions that depend implicitly on the radial displacement Þeld
ur(r), and Cij (i, j = x, θ, r) terms are the components of the elastic stiffness matrix expressed in the
cylindrical coordinate system. For the elastic core, the right hand side of the above equation becomes
zero. In the present situation, we consider thermal loading due to a spatially uniform temperature change.
Therefore, the solution to the above equation in each layer of the composite cylinder is obtained subject to
the boundary conditions

σnrr(rn) = 0, (A3)

the interfacial displacement and traction continuity conditions

uk−1r (rk−1) = ukr (rk−1), σk−1rr (rk−1) = σkrr(rk−1) (A4)

where k = 2, ..., n, and the axial equilibrium condition for the entire multiple concentric cylinder assem-
blage !

Ac

σxx dAc = 0 (A5)

where Ac is the cross-sectional area of the assemblage.
Using standard techniques, the solution of the equilibrium equation in each layer is obtained in the form
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where rk−1 ≤ r ≤ rk. The unknown coefÞcients A1, A2, axial strain ε0xx, and inelastic strain distributions
in the core and the kth shell are obtained at each increment along the imposed thermal loading path by
following the solution procedure outlined by Pindera et al. (1993). The imposed spatially uniform thermal
loading appears in the solution procedure through the application of the interfacial traction continuity and
external boundary conditions upon expressing tractions in terms of strains (and thus the displacement Þeld)
using Hooke�s law.

Axial shear loading

Under axial shear loading by homogeneous displacements or tractions that produce a uniform axial shear
strain in an equivalent homogenized medium, the displacement Þeld takes the following form, referred to
the coordinate system of Fig. A1,

ux(r, θ) = φ(r, θ)− ε012r cos θ, ur(x, θ) = ε
0
12x cos θ, uθ(x, θ) = −ε012x sin θ (A7)

where ε012 is the uniform shear strain in an equivalent homogenized medium generated by homogeneous
displacement or traction boundary conditions in the horizontal plane. The function φ(r, θ) represents the
deviation in the axial shear deformation of a layer from the solution for the equivalent homogenized material
with homogeneous properties and, in the presence of inelastic effects, depends implicitly on the inelastic
strain Þeld. Therefore, the equilibrium equations in the individual layers expressed in terms of displacements
result in the following partial differential equation for the unknown function φ(r, θ) in each layer

1

r

∂

∂r
(r
∂φ

∂r
) +

1
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∂2φ

∂θ2
=
1

r

∂(rεinxr)

∂r
+
1

r

∂εinxθ
∂θ

≡ e(r, θ) (A8)

The solution to the above equation is obtained subject to the homogeneous displacement boundary condi-
tions imposed on the surface of the nth shell

ux(r, θ) = ε
0
12b cos θ, ur(x, θ) = ε

0
12x cos θ, uθ(x, θ) = −ε012x sin θ (A9)

where b is the outer radius of the entire cylindrical assemblage, and the interfacial displacement and traction
continuity conditions. For the above displacement Þeld representation, these reduce to

uk−1x (rk−1, θ) = ukx(rk−1, θ), σk−1xr (rk−1, θ) = σ
k
xr(rk−1, θ) (A10)

since the continuity of the radial and tangential displacement components ur(x, θ) and uθ(x, θ) is identically
satisÞed, and the traction components σrr and σrθ vanish.
The solution to the partial differential equation governing the function φ(r, θ) is obtained in the form

φ(r, θ) =
1√
2π
R0(r) +

1√
π

∞$
n=1

Rn(r) cosnθ (A11)

where
R0(r) = [F10 +

! r
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sf0(s)ds] ln r + F20 −

! r
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s ln sf0(s) (A12)

for n = 0, and

Rn(r) = [F1n +
1

2n

! r

rk−1
s−n+1fn(s) ds]rn + [F2n − 1

2n

! r

rk−1
sn+1fn(s) ds]r

−n (A13)

for n > 0. The functions fn(r) are the coefÞcients of the Fourier series representation of e(r, θ). They are
given by

fn(r) =
1√
π

! π

−π
e(r, θ) cosnθ dθ (A14)
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The unknown coefÞcients F1n and F2n appearing in the solution for Á(r; µ) in each layer are obtained by
applying the interfacial displacement and traction continuity conditions, external boundary conditions, and
employing an iterative solution procedure at each load increment in the manner described by Williams and
Pindera (1997). Convergent solutions in the presence of inelastic effects are typically obtained with 25¡ 30
harmonics in the Fourier series representation of Á(r; µ).

Figure A1. Boundary conditions for the multiple concentric cylinder model subjected to axial shearing in
the x1 ¡ x2 plane.
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